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These examples show that the method isapplicable to higher

frequency ranges.

NOMENCLATURE
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total dimensionless area of finite element domain

area of element e

modal amplitude of wave moving in +r direction away

from origin

modal amplitude of wave moving in -r direction

towards origin

dimensionless circular cylinder radius a#/L #

dimensional radius of circular cylinder (see superscripts)

adiabatic speed of sound

error, Eq. (26)

column vector, right hand side of global matrix equation

dimensionless frequency, Eq. (2)

Hankel function of the first kind

Hankel function of the second kind

Bessel function of the first kind

global matrix, Eq. (23)

wave number, Eq. (4)

characteristic distance

number of elements in finite element domain

number of modes needed for convergence to error er

number of modal coefficientsused in eigenfunction

expansion

number of grid points on interface S used in integration

mode number

mode number, Eq. (10)

number of nodes in finite element domain

local linear triangular interpolation function, N(e)(x,y)

N[e)(xj,yj) = 61j (i= 1,2,3;j = 1,2,3)

number of grid points on interface S

normal vector

outward unit normal vector

dimensionless perturbation acoustic pressure,

P#(x,Y,t)/Oo,rd#Crd #2

dimensionless perturbation acoustic pressure

p(x,y) = P(x,y,t)/e -i_¢

global residual error at node i

dimensionless radial coordinate

lineinterface between finiteelement and homogeneous

domains

partial sum of series with n terms

region exterior to S

region interior to S

arc length parameter on S

t dimensionless time, t#Crd#/L #

W i global weight function associated with node i;

Wi(xj,yj) : 6ij (i --: 1 ... N;j = 1... N)

W[ e) localweight function associated with node i

Win, interface weight function, Eq. (i0)

x dimensionless axial distance, x#/L #

y dimensionless transverse distance, y#/L #

angle between element outward normal and x axis

6ij Kronecker delta (_ij = 1 for i : j; $ij : 0 for i _' j)

e dimensionless complex acoustic permittivity

0 angle between radius vector and x axis

/_ dimensionless complex acoustic permeability

p dimensionless perturbation (acoustic) density

p(x,y) : p# / Po,rd#

Po dimensionless ambient density, po#(x,y)/Po.rd #

(Po(X,y) : I for uniform properties)

_b column solution vector, Eqs. (23) and (24)

w # angular velocity, 2xf #

w dimensionless angular velocity, Eq. {2)

Subscripts:

a analytical solution

I node location on interface S

i node location in finite element domain

o mean fluid condition

ref arbitrary reference location for normalizing material

properties

x x component

y y component

Superscripts:

approximate solution

dimensional quantity

' derivative with respect to argument

average value

(e) element value

i incident component

S scattered component

METHOD OF ANALYSIS

The present study is concerned with computing the acoustic

scattering by a symmetric two-dimensional body of an impinging

plane wave traveling in the +x direction. The spatial domain is

divided into two subdomains, the homogeneous domain and the finite

element domain, as shown in Fig. 1. The finite element domain

contains a nodal grid system that covers the region of complicated

geometry and material property variations. Linear triangular ele-

ments are used and the subdomain interface is approximated by

plecewlse linear segments. In the finite element domain, an approx-

imate solution for the total (incident + scattered) acoustic pressure

p is calculated by the Galerkin method. In the homogeneous domain,

which extends to infinity, an analytic solution (an elgenfunction
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Figure 1 .--Finite element grid system.

expansion) for the total acoustic pressure Pa is derived by separa-
tion of variables.

The modal element method couples the two solutions by

imposing continuity on the pressure and velocity at the interface

between the two subdomalns. This coupling results in a single
matrix equation in which the eigenfunction coefficients and the

pressure at the finite element nodes are calculated simultaneously,

yielding a global representation of the acoustic field. Generally,
however, the desired quantity is the pressure field in the homoge-
neous domain, so the main goal is to find the eigenfunction coeffi-

cients; the finite element solution acts simply as a tool to obtain
those coefficients.

modal ring method, significantly reduces computation time and array

sizes by eliminating nodes inside the body where the field does not

penetrate. Coated rigid bodies could employ a small number of rings
to calculate the pressure field in the penetrable coating.

GOVERNING EQUATIONS

Acoustic propagation in two-dimensional space can be modeled

by the continuity, momentum, and state linearized gas dynamic
equations in the absence of flow. For harmonic pressure propagation

in a heterogeneous bulk material, Baumeister and DaM (1987) used

these equations to derive the following dimensionless wave equation:

(1)

where the dimensionless frequency associated with this ttelmholtz-

like equation is defined as:

f - L#f# _ = 2rf (2)

Cre_

The notation is explicitly defined in the nomenclature. The refer-

ence location is arbitrarily chosen; all nondimensional properties are

normalized to their reference values.

The relationship among acoustic =permittivity _ e, acoustic

gpermeability _ p, and the physical properties of the medium is

complicated in the general case. However, for propagation in

homogeneous media without dissipation, such as air, e is the non-

dimensional ambient bulk fluid density and /_ is its inverse:

1
= pAx,y), =__ (3)

Po(X,Y)

For bulk absorbers, Baumeister and Dahl (1987, Eqs. (25) to (27))

employed Hersh's model (1980) in explicitly relating • and p to the

porosity, a viscous loss coefficient, a heat transfer parameter, and an

effective speed of sound of the medium. Briefly, for bulk absorbers,

the real part of • is related to ambient bulk fluid density while its

imaginary part is proportional to a viscous loss coefficient. The /z

GEOMETRICAL MODEL

A general finite element grid (Fig. 1) has been developed to
study acoustic scattering from symmetric two-dimensional bodies

with either hard (reflecting, rigid) or soft (absorbing) internal
structures. The grid divides the finite element domain into rec-

tangular, transition, and polar regions. The interior rectangular grid
is used to model complicated geometries by a set of stepwise curve-

fitting parameters, exemplified by Insert A (an aircraft inlet nacelle)
in Fig. 1. The outer polar region is used to model more circular

structures, such as an absorber-coated hull, as shown in Insert B in

Fig. 1. The transition region links the polar and rectangular grid
regions. The finite element domain can be restricted to the scatter-

ing body, or can extend as far beyond the body as desired.
For absorbing bodies, the entire body is covered with finite ele-

ments to track the propagation of an incident wave penetrating it.
It is generally accepted that 12 nodes per wavelength are required
when using linear elements, so the higher the frequency of the inci-
dent wave, the finer the grid must be.

For rigid bodies with simple shapes, it is possible to reduce the

finite element structure inside the body to a single ring of elements

following the body's contour, as shown in Fig. 2. This variation_ the

Homogeneous

main

 ent

plane wave

Interracial // _- Finite element
boundary S--" domain

¢ = 1-1019i

ix = 1.0

Figure 2.--Finite element ring grid system for rigid
bodies.



term is inversely proportional to ambient bulk fluid density and the

effective speed of sound, which depends on the heat transfer charac-

teristics of the medium. The formulas for s and p are given by

Baumeister and DaM (1987, Eqs. (5) and (7)). Morse and Ingard

(1986, p. 253) also developed more general parameters for describing

propagation in porous media for which e and # can be related.

For elastomeric materials, such as rubber, e and t_ are generally

complex because of the complex nature of the propagation speed in

the medium (Capps, 1989, p. 10). In the present paper, the param-

eters s and p are treated as mathematical quantities independent

of property correlations. Both quantities are complex with the

imaginary parts associated with dissipative losses.

In the homogeneous domain, the properties _ and p are

assumed constant. Thus, by substituting Eq. (3) into Eq. (2), the

governing equation simplifies to

02P---_a+ --02Pa ÷ k2 Pa = 0, (4)

0x2 0y2

where k 2 = w2#_. The subscript a is introduced to indicate that

the acoustic pressure solution designated by Pa is the analytical

solution that applies in the homogeneous domain, in contrast to the

pressure p designating the pressure in the finite element domain.

ANALYTIC SOLUTION

In the homogeneous domain, an exact eigenfunction expansion

can be derived from Eq. (4) by separation of variables. This expan-

sion, valid only in the homogeneous domain, is linked to the finite

element solution, valid only in the finite element domain, by the

modal element method.

Consider an acoustic pressure plane wave traveling in the +x

direction, striking a symmetric two-dimensional scatterer. In the

homogeneous domain, the expression for the total pressure Pa can

be broken into the incident plane wave and the scattered wave:

i s (5)
Pa = Pa + Pa '

i s

where Pa is the incident wave and Pa is the scattered wave. A

plane wave moving in the -}-x direction has the form

i eikx _ imPa = = eikrc°s(0} = Jo(kr) + 2 cos(m0)Jm(kr ) ,
m---1

(6)

when the time dependence is assumed to be e"i°Jt.

The eigenfunction expansion in two dimensions is written in

the following form (Morse and Ingard, 1968, p. 401):

Mcoef- 1

I[; A:H(mll(kr)cos(m0) + AmH(m2)(kr)cos(mg) . (7)

Equation (7) is valid only for problems that are symmetric with

respect to the x-axis because of the assumed mathematical form of

the incident wave in Eq. (6) (Eq. 1.2.9 Morse and Ingard) which

leads to the cosine term in Eq. {7). Due to the form of the time

dependence, Hm(l) terms correspond to waves traveling outward in

the +r direction and Hm(2} terms correspond to inward traveling

waves. The scattered wave is then written as

Meoef-1

p: = _ A+a{ml)(kr)cos(mS) , (8)

Ea_0

where Mcod, the number of coefficients used in the expansion, must be

set a priori. Hereafter, the eigenfunction terms are called modes, as

commonly used in acoustic theory. Equation (8) satisfies the far field

boundary condition--scattered waves move outwardly. The coeffi-

cients A_ are unknown, to be determined by the imposition of

interface conditions.

INTERFACE CONDITIONS

At the interface S between the finite element domain and the

homogeneous domain, both pressure and velocity are continuous

(Temkin, 1981, p. 80). The continuity of pressure

PIS" - PlS- " 0 (9)

can be expressed numerically by a collocation procedure (Lee and

Cendes, 1987) or an integral weighting procedure (Baumeister, 1986b,

Eq. (45)). The latter is used here with weight functions cos(m*O),

so the continuity of pressure at the interface is expressed by

$----2r

£ Wm.[P.+:0
0=0

Wm. = cos(re'0)

(lO)

(m* = O,1,2,...,Mcoef-1 equations)

In general, S can be parameterized by a function of r and O,

introducing a 0 dependence into ds. Unless S is a circle, then,

the orthogonality of the cosine functions cannot be used, and a com-

pletely numerical approach must be adopted to determine equations

for the A_.

For the problems considered so far, it suffices to apply a simple

quadrature to obtain acceptable results when approximating Eq. (10).

S is divided into subintervals centered at points (ri,0i), which cor-

respond to finite element nodes introduced later in the paper. Once

M¢oef has been determined (based on the incident wave frequency and
data in Figs. 3 and 4), the grid is set up so that the number of nodes

on S is N s > 12M¢o d to adequately resolve the pressure field.

Experimentation has determined that, at least for simple geometries,

not all of these points need to be used in the quadrature to approx-

imate Eq. (10) accurately. In the examples presented later, the

number of points used is Mnt s = 2Mcoef. These nodes are equally

spaced around a circular interface S, so every sixth point is used in

the quadrature below.

It is highly desirable to reduce the number of nodes used; doing

so reduces the bandwidth of the solution matrix and yields a large

savings in core storage and computation time. For more compli-

cated problems, however, it will probably be necessary to use a

better quadrature to approximate Eq. (10), which may increase com-

puting requirements.
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Figure 3.--Number of modes required to resolve the
scattered acoustic pressure field on a cylinder of
radius a subjected to a plane wave impingement for
a relative error e r.

Applying the midpoint rule to the chosen nodes gives

Mptl

I=1
Ipa(rl,8i) - pljcos(m*0i)r I Ae I = 0 .

(m* = 0,1,2,...,Mcoef-1 equations)

By expressing Pa in terms of the modal coefficients in Eq. (8),
Eq. (11) can be written explicitly as

Mpt=

rI A01 cos(m'0i)

I=1

× eikh cos 01 + E AmH }(krI)c°s(m0I)- PI =
m=0

(m* = O,1,2,..,Mcoef-1 equations)

0 .

(zz)

(12)

Equation (12) comprises Mcoef separate difference equations, each

of which is written in terms of all the unknown coefficients Am+ and
the pressure PI at the nodes on S. These equations are combined
with the finite element equations presented below to form a matrix
system which yields all the unknowns at once.

The continuity of velocity (Baumeister and DaM, 1987, Eq. (21))
requires that at the interface

where n is the outward normal. This relationship is key to the

modal element method, as indicated below.

BOUNDARY CONDITIONS

The pressure field is scaled appropriately by introducing the
normalized incident wave in Eq. (6). The far field radiation boundary
condition is satisfied exactly by the assumed form of p_ in Eq. (8).

The pressure continuity across the domain interface is enforced by
Eq. (12), and the velocity continuity across the interface by Eq. (13).

No special handling of acoustic boundary conditions at media inter-

faces within the finite element region is required because the variable

property form of the wave equation has been employed. Any change

in internal structure in the finite element region can be simulated

merely by changing the properties of the elements in the finite ele-

ment domain, as shown by Baumeister and Dahl (1989).

FINITE ELEMENT SOLUTION

The finite element domain, with total area A, is divided into M
discrete triangular elements, A (e), e : 1,2,...,M, defined by N corner

nodal points (x-,Yi_,.,_tj i : ,2,...,N. The corner nodes for area A (e)

are denoted [x}ej,yl(e)], x(e)2'J2V(e)lj, and rx(e)l3 ,a3v(ehl" It is assumed that
all material properties are constant in each element.

The acoustic pressure is approximated by a linear combination

of weight functions Wi(x,y):
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Figure 4".--Number of modes required to resolve the
scattered acoustic pressure field around a cylinder of
radius a subjected to a plane wave impingement, at
various radii, for relative error e r = 10-3.



N

_(x,y) = _ Wi(x,y)p i = [W(x,y)]{p} , (14)
i:l

with [ ] representing a row vector and { } representing a column

vector. The weights have the property that

Wi(xj,yj) = liij (Kronecker delta) ,

(15)

so that the unknown nodal pressure values are given by Pi = P (xi,Yi)"

To determine {p}, apply the method of weighted residuals. In

this method, the residual error of Eq. (I),

{ ' }R i = ffAWi V. _Vp ÷ a,2_ dxdy
S

(i = 1,2,3,...N one residual

equation for each node i)

(16)

is set to 0 for each node i. Applying the divergence theorem to the

first term of the integrand in Eq. (16) yields the weak formulation of

Zq. (1):

Ri ffA VWi" i . W i V_" n ds = 0.
e

(i = 1,2,3,...N one global finite difference

equation for each node i) (17)

Equation (17) isa global, or node-oriented, formulation, in that it

provides a difference equation for each node that can be used to

determine {p}.

From a practical standpoint, though, it ismore convenient to

consider a local,or element-oriented, formulation, which more easily

provides the same difference equation for each node. To develop the

local formulation, write each residual R i as the sum of the element

residuals:

0 = R i = _ R! ') = VW e). 1V_(. ) + W e)aJi#_{') A
i A (o)

e=l e---1 6

Ssc.,nst '•

(i ffi1,2,3,...N one global finite difference

equation for each node i) (18)

where S (e) is the boundary of element A[e). Note that for stand-

ard weight functions, the line integral in Eq. (18) vanishes unless

node i is on the boundary S.

In order to evaluate the integrals in Eq. (18), it is necessary to

represent _ (x,y) locally. Let Nj (¢), j = 1,2,3, be the local linear

shape functions associated with each corner node (Segerlind, 1976,

p. 29), so that

_(')(x,y) = Nle)(x,y)p_e' ÷ N_e)(x,y)p_e) + N_e)(x,y)p_ ')

3

"l'_j (x,y)pj = [N(e)(x,y)]{p (e)} •
j=t

(19)

Now implement the Galerkin method--let the local weight function

Wi(e) associated with node (xi(e),yi[e})equal Ni{e). The global

shape function W i is identically zero for any element where node i

does not appear.

In the boundary integral terms in Eq. (18), itis reasonable to

approximate the (continuous) normal derivative with its mean value

over S(e)nS. The key step is to apply the continuity of velocity

(Eq. (13)), which introduces the eigenfunction coefficients,thus link-

ing the analytic solution and the finiteelement solution on the inter-

face. The term is transformed as follows:

f
_s(.ln_ t i 7 nstl 7-_--

= __ __ N(e)ds

_a[ On is(')

1 f0Pa 1 _@Pa • - JS] N SN(e)ds'i: _/___os(B - o) + o) fs(')s.t _ 7_,, s'n(_ c.)

(20)

where fl and 0 are shown in the insert in Fig. 1.

Substituting Eqs. (19) and (20) into Eq. (18) and employing

the Galerkin approximation yield

0 = R i = e=i_M[ffA(')te(e)[1VN!e)'V[N(e)]-wzg(e)Nle)[N(e)]){p(e)}dAI

- cos(I/- O) + =__sin(_ - O) fs(') fl S i "
r 00 S(')

(i = 1,2,3,...N one global finite difference

equation for each node i) (21)

For each value of i, Eq. (21) can be evaluated explicitly using the

standard definition of Ni(x,y ) for linear triangular elements

(Segerlind, 1976, p. 29).

Combining Eqs. (21) and (12) provides the final form of the

matrix equation

K {¢} = {F}, (22)

where

{+}T = [A;,A; ,...,Ai_I o,f, plipi,...,pN] "
(23)

F contains the incident plane wave terms present in Eq. (12) and in

the derivatives of Pa in Eq. (21). The matrix K has the following

general form



A(22) [ p(22) ___J

The submatrix A (12) is a full Mcoef × Mcoef matrix composed of the

coefficients of the A_ terms in Eq. (12). The submatrix p02) is a

sparse Mcoef × N matrix composed of the coefficients of PI in

Eq. (12). A (22) is an N × Mcoef matrix composed of the coefficients

of A._ from the surface integral in Eq. (21). For each boundary node,

there"is a full row of terms in A (22), with a full row of zeros for

interior nodes, p(22) is a sparse, highly banded N × N matrix

composed of the coefficients of PI in Eq. (21).

Equation (22) is solved by a frontal solver. The number of

columns kept in core is roughly Mcod + MptJ2 + bandwidth of
p(22).

RESULTS AND COMPARISONS

In order to validate the method, several numerical experiments

are presented. First, a description of the number of modes required

for convergence in Eq. (8) isgiven, and a simple formula isprovided.

Example I shows the simple case of a plane wave passing through air.

Examples 2 and 3 describe the problem of scattering from a hard rigid

cyllnder_ using the modal element method and the modal ring method,

respectively. Both numerical results agree closely with the exact

solution for these problems. Finally, scattering from a hard circular

cylinder with an absorbent coating is presented in Example 4. These

examples give an indication of the value of the modal element method:

the speed and accuracy of the calculations, the relativelylow matrix

storage costs, the wide frequency range available, and the flexibility

to handle problems of complicated geometry and material property

variation.

For the circular cylinder examples to follow, the characteristic

length L # is set equal to the radius of the circular cylinder. Conse-

quently, the dimensionless radius a = 1 in all examples.

Itis of practical interest to determine the number of modes

necessary for the series in Eq. (8) to converge. As more modes are

needed, more finiteelement nodes on the interface are also needed,

and hence more computing resources are required. To get a rough

idea of the number of modes needed for a particular application,

consider the expression for the scattered fieldgenerated by an inci-

dent plane wave (as in Eq. (6)) striking a hard cylinder. This

expression is given by the infinite series associated with Eq. (8),

where (Bowman et al., Eq. (2.38))

A: = -(2 - 5m0 ) im J'm(ka) (24)

H_)'(ka)

Clearly, the number of modes isdetermined by ka, the observation

radius r, and the desired accuracy of the solution. For the data

presented in Figs. 3 and 4, accuracy ismeasured relatively;that is,

letting the partial sums of the series be denoted by Sn, the series

has converged if

(S.+l- Sn)
< er. (2S)

Su

In Fig. 3, the number of modes needed for various er values is

compared with ks, on the surface of the cylinder (r = a). The data

clearly shows that as er decreases, the number of required modes

increases, as expected. However, the increase is slow enough that

only a few extra terms are needed to improve the accuracy sig-

nificantly. For example, if ka = 100, then 110 modes are required

for e r -- 10 -1, but only 18 more modes are needed to improve the

accuracy to er = 10 -6. Similar results hold off the surface, in both

the near and far fields. Note that for the most computationally

intensive case considered (ka = 100, er = 10-6), the number of

columns kept in core by the frontal solver is under 300.

It might be expected that the number of required modes increases

in the far field, but Fig. 4 indicates otherwise. As r increases, the

amplitude of Hm(l) decreases, so the terms are smaller and the ser-

ies converges faster. As seen in the figure, the decrease in the num-

ber of terms is slight, and occurs even for small r/a values. The

data in Fig. 4 is for e r = 10 -3, but is representative of all the other

e r values.

The following formulas give a rough indication of the number

of modes needed for convergence:

ka < 15 ,

(26)

Mc = int {[10 ÷ l°gl0Ile}] + II.00 + 0.031°g,I!}](ka)l

ka > 15 .

(27)

Equation (27) is valid for ka up to 100, and may be accurate for

larger ka values. In many cases, the number of terms indicated by

the formulas is slightly larger than the number of terms actually

needed, but is nowhere smaller. The worst observed difference is for

ka : 1001 er -- 10 -6, where 128 terms are required, but the formula

gives 134. The equations are valid on the surface as well as in the

far field.

Figures 3 and 4 are not valid for a general problem. However,

they represent a good starting point for estimating the number of

modes required for convergence.

In each of the following examples, a unit plane wave, incident

from the left, strikes a cylinder oriented with its axis normal to the

propagation direction.

Example 1. - Propagation Through Air

Consider the incident plane wave propagating through air and

impinging on an imaginary cylinder (radius I) composed of air. The

modal element method verifiesthat there isno reflectionfrom the

cylinder and the pressure amplitude inside and outside the cylinder

is I. Figure 5 shows the pressure amplitude at the interface between

the finiteelement and homogeneous domains. For a relatively coarse

grid, the firstfew calculated modal coefficients(which should vanish)

are:

+

A 0 = -0.33424 × 10 -4 - 0.57905× 10- 2 i

-t =A 1 -0.13103×10 -2 _ 0.18505×10-4i

÷

A 2 ffi 0.12062._10-5 + 0.45241×10-3j

Example 2. - Rigid Cylinder_ Modal Element Method

Consider the incident plane wave striking a solid rigid cylinder

of dimensionless radius r = 1, with ka = l. For all internal ele-

ments, the permittivity is set to _ = 1 - 1019 i to approximate a

hard cylinder. The finite element domain extends to r = 1.5; in this

case the polar region contains air, although it co,rid be filled with an

absorbing material, as in Example 4.
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Exact analysis ABS (p)
Numerical solution ABS (p)

Clearly, the numerical and exact values of the modes are very close
for those modes which make a significant contribution to the scat-
tered field.

[]
Exact analysis ABS (p)
Numerical solution ABS (p)

Figure 5.--Polar plot of the total acoustic pressure
around a cylinder composed of air (zero scattering, k
= 0.628, r = 1.0, 57 nodes, 96 elements, Ax = Ay =
0.25 in rectangular region), interface at r = 1.

In Fig. 6, the pressure amplitude is plotted against azimuthal

angle for ka -_ 1. Figure 6(a) shows the pressure on the cylinder's
surface (r : 1), while Fig. 6(b) shows the pressure at r = 1.5. Since
these radii are both in the finite element domain, the finite element

solutions {hollow boxes) are compared to the exact solution (solid line).
Clearly, the method gives excellent results.

In Fig. 7, the pressure amplitude is plotted again for ka : 1,

but for larger radii in the homogeneous domain. In these plots, the

numerical solution is generated from the calculated modal coefficients

A_ using Eqs. (5), (6), and (8). Plots for r : 1.5 (7a), r : 3.18
(Tb), r : 7.95 (7c), and r : 15.9 (Td) are shown. Again, there is
excellent agreement between the numerical solutions (hollow boxes)
and exact solutions (solid lines).

The grid shown in Fig. 1 was used to generate the data pre-

sented in Figs. 6 and 7. Recall that from the analysis summarized
in Fig. 4, if a given set of modes accurately describes the pressure

field on the surface of the solid cylinder, then the pressure is accu-
rately described for all larger radii, since the required number of
modes decreases in the far field. The first few calculated modal

coefficients are:

Numerical Solution Exact Solution

Ao+ = -0.25066E-00- 0.42154E-00iA_ : -0.24087E-00

A_ = -0.07095E-00- 0.2SSSSE-00iA_ = -0.6SOlSg-00

A + = +0.14075E-01- 0.16658E-00iA + : +0.I$825E-01

A+ = +O.70SSOE-02 + o.tlOS0E-0Si A + = +0 71002E-02

A4+ = -0.49985E-06 + 0.13701E-03i A4+ = -0.11510E-07

A'_ = -0.66945E-05 - 0.45628F_,-06i A + = -0.19355E-05

A + : +0.13118F,-07- 0.21260E-06i A + = +0.15400E-15

A+z = -0.55536E-07- 0.29859E-07iA + = +0.98529F_,-I0

As+ : +0.22121E-09- 0.70338F_09i A+ = -0.98392E-25

- 0.42761E-00i

-- 0.24557Fr00i

- 0.16569E-00i

+ 0.25271E-04i

+ 0.15172E-05i
- 0.187_1E-1Ii

- 0.1637tF-,-07i

+ 0.48540F_,-201

+ 0.44560E- 12i

(a) r = 1.0.

(b) r = 1.5.

Figure 6.mPolar plot of the total acoustic pressure at

node points around a solid cylinder subjected to a
plane wave impingement (k = 1.0, a = 1.0, 1865 nodes,
3648 elements, Ax = Ay = 0.05 in rectangular region),
interface at r = 1.5.



[3
Exact analysis ABS (p)
Numerical solution ABS (p)

amplitude

(a) r = 1.5. (b) r = 3.18.

(c) r= 7.95. (d) r= 15.9.

Figure 7.--Polar plot of the total acoustic pressure around a solid cylinder subjected to a plane wave impingement
reconstructed from modal-element method modal coefficients (k = 1.0, a = 1.0, 1865 nodes, 3648 elements, _x =
Ay = 0.05 in rectangular region), interface at r = 1.5.



[]
Exact analysis ABS (p)
Numerical solution ABS (p)

(a) r = 1.5; kr = 75. (b) r = 7.9575; kr = 397.89.

ka = 50

(1608 nodes, 1608 elements, _r = 0.001,40 = 0.45 °)

Z

o o--'- [ o

\

_ jl _"

(d) r = 7.9575; kr = 795.77.

\

amplitud_

/

(c) r=1.5; kr=150.

ka= 100

(2904 nodes, 2904 elements,/tr = 0.0005,/tO = 0.25 °)

Figure 8.mPolar plot of the total acoustic pressure around a solid cylinder subjected to a plane wave impinqon=_,_t
constructed from modal coefficients determined by modal-ring method.

\
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Example 3 - Rigid Cylinder, Modal Ring Method

Consider a high frequency incident plane wave striking a solid

rigid cylinder of dimensionless radius r -- 1. The modal ring method,

using a grid similar to that of Fig. 2, is used to generate the pressure

amplitude plots in Fig. 8 for frequencies corresponding to ka = 50

and ka = 100 at r = 1 and r = 7.9575. Choosing as an acceptable

relative error s -- 10 -3, the number of modes required to resolve

the scattered field is Me = 67 for ka = 50 (Figs. 8(a) and (b)) and

M c = 121 for ka = 100 (Figs. 8(c) and (d)). The total number of

finite element nodes used is 24M c (12M c each on the interface and

the outer ring). The excellent agreement between the numerical

solutions (hollow squares) and the exact solutions (solid lines)

clearly indicates that the modal ring method is suitable for high

frequency scattering applications.

As an additional consideration, when the modal ring method is

applied to a low frequency scattering problem considered by Khan,

Brown and Ahuja (their Fig. 3), the modal ring method gives more

accurate results with a reduction of two orders of magnitude in the

number of grid points.

Example 4. - Coated Rigid Cylinder

Consider the incident plane wave impinging on a cylinder of

dimensionless radius r = 1 that has a rigid solid core of radius 0.9

and an absorbing coating of thickness 0.1. The solid rigid core is

approximated by setting e --= I - 1019 i while the coating has

• = # = 1 - 5i. Tile grid shown in Fig. 1 was used in this example.

Figure 9 shows the calculated pressure amplitude at r = 3.18. The

effect of the coating is apparent by comparing this figure with

Fig. 7(b). The profiles have the same general shape but the coating

induces slightly more backscatter (0 = 0), and slightly less scattering

at O = 135, 225 °. Because the modal element method is relatively

inexpensive to run, it could be used to identify coatings that

maximize the absorption of acoustic energy.

CONCLUDING REMARKS

The modal element method for acoustic scattering from a two-

dimensional body is presented. The body may be acoustically hard

(reflecting) or soft (absorbing). The acoustic pressure field is repre-

sented by a finite element solution in the bounded finite element

domain containing the body, and by an exact eigenfunction expan-

sion in the unbounded exterior homogeneous domain. The two repre-

sentations are coupled by the continuity of pressure and velocity across

the interface between the two subdomalns, and axe calculated simul-

taneously from a single matrix equation. The method is applicable to

problems involving high or low frequency scattering.

The analysis for two-dimensional scattering from solid and

coated bodies is presented, and several simple numerical examples

are discussed. The examples are provided for validation--the

numerical results show excellent agreement with the corresponding

exact solutions. More detailed numerical work is planned.

For scattering from rigid bodies, the modal ring grid offers an

attractive low storage approach to handling high frequency scatter-

ing. The modal ring grid effectively reduces the two-dimenslonal

problem to a one-dimensional problem similar to the boundary ele-

ment method. The ring grid offers the added advantage of being

able to handle rigid bodies with coatings.
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